
POLITECNICO DI MILANO

Dipartimento di
Elettronica, Informazione
e Bioingegneria

Fault attack friendliness of post-quantum cryptosystems

Alessandro Barenghi, Gerardo Pelosi
Fault Diagnosis and Tolerance in Cryptography 2023 - 10th September 2023



2Outline

Context

∎ Post quantum cryptosystems are coming:

● Draft NIST FIPS 203, 204, 205 (Kyber, Dilithium, SPHINCS+) up for comments
● Call for Additional Digital Signature Schemes closed last June

Goal of the talk

∎ An overview of the common traits among post-quantum cryptographic primitives

∎ Highlight wherever the common traits are fault-fragile



3NIST Post Quantum Standardization competition

∎ First public competition for asymmetric cryptographic primitive design
● previous ones yielded AES, SHA-3, SHAKE
● previous asymmetric encryption schemes standardized after being popular

∎ Began in 2017, now “over but not quite yet”
● FIPS drafts up for comments until this November

Requirements for the new designs

∎ NIST requires resistance to “active attackers”

● For encryption schemes, the attacker has access to a decryption oracle
● For signature schemes, the attacker has access to a signature oracle

∎ Side channel attack security explicitly among desirable additional properties



4Public Key Encryption schemes

∎ NIST call asked for two kind of primitives
● Public Key Encryption (PKEs): encrypt and decrypt a generic message
● Key Encapsulation Methods (KEMs): encrypt and decrypt a short random key

∎ KEMs won the “popularity contest”
● Only one PKE promoted to second round (LEDApkc), merged with a

corresponding KEM
● PKEs are advantageous when small messages are transmitted

∎ Most KEMs are built... adding components to a PKE!



5Underlying hard problems

High level view of hard problems

Given a matrix G and c = aG + e, where e is “small”, it is hard to find a,e

∎ message encoded as either a, e or both

∎ remaining element between a, e, drawn at random

∎ private key allows to retrieve a,e from c (removing the “error” e from aG)

PQ PKEs may have failures

∎ Example: if e is too “large”, but small enough to be admissible by cipher parameters

∎ Failures leak information on the private key:

● Cipher parameters designed so that they occur with negligible probability/never

∎ In both cases, injecting controlled faults will make failures appear



6How to get to active-attacker resistance

Increasing attacker capabilities

OW-CPA (OW-Passive)

1. Attacker gets the pk

2. Attacker gets a
random ciphertext c

3. Attacker wins if it
decrypt c

IND-CPA

1. Attacker gets pk and
chooses two ptx
m0,m1

2. Attacker gets either
Enc(m0) or Enc(m1)

3. Attacker wins if it
guesses which it got

IND-CCA

1. Attacker gets pk and
chooses two ptx
m0,m1

2. As in IND-CPA, but
the attacker can also
get Dec(mx), as long
as x ∉ {0,1}

Separation of concerns approach

Design a PKE, secure under a weak attacker model, “promote it through constructions”.



7Ingredients

OW-CPA
 PKE

Decryptionsk

c
m'

OW-CPA
 PKE

Encryption
m

pk

$

c

Hashm d

=?a

b
y/n

n

y

x



8The Fujisaki-Okamoto (FO) transform

The majority of PQ KEMs are derived from a PKE through the FO transform
composing two elements, the T and U transforms [Hofheinz et al., 2017]

T transform

∎ T: takes a randomized OW-CPA PKE, “derandomizes” and adds decryption check

U transform

∎ U: Takes the output of the T transform, achieves IND-CCA through

● Feeding the IND-CPA PKE a random message
● In case of a PKE decryption failure either

U� fail in decapsulating the key (outputting �), or
U�� output a pseudorandom string depending on a secret and the ciphertext



9T transform encryption

OW-CPA
 PKE

Encryption
m

pk

$

c

Hashm
ptx

ctx

public
key

d



10T transform decryption

OW-CPA
 PKE

Decryptionsk

c
m' Hashm d

OW-CPA
 PKE

Encryption
m

pk

$

c

=?a

b

public
key



11T transform effects

∎ Obtains a DPKE, allowing reencryption on receiver side
∎ Achieves rigidity [Bernstein and Persichetti, 2018]:

● informally: no two distinct ciphertext decrypt to the same plaintext
∎ Non rigid KEMs allow a CCA attacker to:

1. Collect a correct m, c pair
2. Ask the encryption oracle to decrypt c + ε and see if it yields still m
3. Employ the information to infer the value of the “small” e

∎ Fault fragility: non rigidity is restored with a fault:
● Flipping the result of the comparison
● Skipping the selection at the end



12U�� transform encryption

OW-CPA
 PKE

Encryption
m

pkpk

$
$

c

ctx

Session
Key

Hashm d

Hash'm d

the green colored arrow is optional



13U�� transform decryption

OW-CPA
 PKE

Decryptionsk

c
m'

m'

Hashm d
OW-CPA

 PKE
Encryption

m

pk

$

c

=?a

b
y/n

n

y

Hash'm d

Hash'm d

sk'

ctx

private
key

public
key

the green colored arrow is optional



14U�� transform effects

∎ Obtains a KEM employing coins as a message
∎ Hashes the plaintext (and optionally the ciphertext together)

● Prevents straightforward differential fault analysis, as a side effect
∎ Adds (optionally) implicit rejection

● Implicit rejection effectively hides failures
∎ 1st Fault fragility of implicit rejection

● Skipping the final comparison will make them evident again [Oder et al., 2018]
∎ 2nd Fault fragility of implicit rejection:

● Run twice the entire decap process, with the message expected to fail
● One in two cases, inject a fault in the computation of the “garbage answer”
● Employed in [Bernstein, 2022] to break NTRU, assuming a persistent fault, and

an output collection before it takes place



15Besides FO transform - Plaintext Confirmation - Encap

OW-CPA
 PKE

Encryption
m

pkPublic
key

$
ptx

c

Session
KeyHash''m d

Hash'm d

Hash

Con�rm.
hash

m d

ctx



16KEM with Plaintext Confirmation - Decapsulation

OW-CPA
 PKE

Decryptionsk
Private
Key

cctx

m' Hashm d

Hash'm d
Con�rm.
hash

=?a

b
y/n

n

y

Session
Key



17Plaintext confirmation

History and effects

∎ Dent [Dent, 2002] proposed plaintext confirmation as a building block for KEMs

∎ Dent’s idea prevents tampering with the ciphertext, as the attacker is not able to
predict the value of the decrypted (modified) plaintext

∎ A variant introduced in [Baldi et al., 2020] and also used in BIKE allows also to check
that the ptx fed to the KEM is obtained via a SHAKE (or another XOF)

∎ Fault fragility: instruction skipping/comparison altering still works
● Smaller attack surface w.r.t. implicit rejection, while performing similar task



18Signature algorithms

From interactive to non interactive

∎ A very popular approach to design a signature is:

1. Design an interactive identification scheme between a prover and a verifier
2. Remove the interactivity turning it into a signature via [Fiat and Shamir, 1986]

∎ Dilithium, selected for standardisation, also employs a similar framework

High level view of an ID scheme using a hard problem P

1. Generate a keypair: public key: an instance of P, private key: the solution

2. Prover: build an instance P′ related to P, solve it with the knowledge of the private key

3. Prover: convince verifier that you know the private key showing either

● that you generated P′ from P or
● showing the solution to P′ without revealing the private key



19The CROSS [Baldi et al., 2023] ID scheme

param: group G ⊂ Fn
q, sk: restricted vector e ∈ G pk: parity-check matrix H ∈ Fn×r

q , syndrome s = He⊺

Hard to obtain e, given s,H

PROVER VERIFIER

Sample Seed
$
←ÐÐ {0;1}λ, (u′,e′) Seed

←ÐÐÐFn
q ×G

Compute d ∈ G such that d ⋆ e′ = e
Set u = d ⋆ u′ and s̃ = uH⊺

Set c0 = Hash(s̃,d), c1 = Hash(u′,e′)
(c0,c1)
ÐÐÐÐ→

β
←ÐÐ Sample β

$
←Ð F∗q

Compute y = u′ + βe′ \\Uniformly random over Fq
Set h = Hash(y) \\First response

h
ÐÐ→

Sample b
$
←Ð {0,1}

b
←ÐÐ

If b = 0, set rsp = (y,d) \\Second response

If b = 1, set rsp = Seed\\Second response
rsp
ÐÐ→

Verify cb using rsp



20The Fiat-Shamir transform for 5-pass schemes

PROVER (sk) VERIFIER (pk)

Prepare Com
Com
ÐÐ→
Ch1
←ÐÐ Sample Ch1

Compute Rsp1
Rsp1
ÐÐÐ→
Ch2
←ÐÐ Sample Ch2

Compute Rsp2

Rsp2
ÐÐÐ→

Accept or reject



20The Fiat-Shamir transform for 5-pass schemes

PROVER (sk) VERIFIER (pk)

Prepare Com

Set Ch1 = Hash(Msg, Com) Sample Ch1
Compute Rsp1
Set Ch2 = Hash(Msg, Com, Ch1, Rsp1) Sample Ch2
Compute Rsp2

Com,Rsp1,Rsp2
ÐÐÐÐÐÐÐÐ→

Set Ch1 = Hash(Msg, Com)
Set Ch2 = Hash(Msg, Com, Ch1, Rsp1)

Accept or reject



21From a fault attack perspective

Faults in the control flow

∎ Signatures obtained from FS-transforming an ID scheme reveal the private key if both
commitments are revealed in a single iteration

∎ Inducing a repetition of a response preparation with a different challenge can be done
faulting the protocol repetition counter

Faults in the manipulated data

∎ Responses depending on private key material may reveal information if properly
faulted during preparation (e.g., partial zeroing)

∎ In signature verification, there are targets beyond the final check (this afternoon’s
presentation)



22Concluding remarks

∎ Constructions for IND-CCA KEMs protect against attackers “at the ends”
● They become a relatively soft target for fault attacks
● If kept in place by hardening, they help in warding off other fault attacks
● Silver lining: critical code portions appear few and cheap to harden

∎ ID scheme + Fiat-Shamir transform based signatures
● Require care in avoiding control flow altering faults
● Require care in preparing responses depending on the private key

∎ Is it possible to design more efficient constructions to ward off fault attacks?



23Questions?

Thank you for the attention!



24Bibliography I

▸ Baldi, M., Barenghi, A., Bitzer, S., Karl, P., Manganiello, F., Pavoni, A., Pelosi, G., Santini, P., Schupp, J., Slaughter, F., Wachter-Zeh, A., and Weger,
V. (2023).
CROSS (Codes and Restricted Objects Signature Scheme).
https://www.cross-crypto.com/cross.html.

▸ Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., and Santini, P. (2020).
LEDAcrypt: Low-dEnsity parity-check coDe-bAsed cryptographic systems - specification version 3.0, (April 2020).
https://www.ledacrypt.org/.

▸ Bernstein, D. J. (2022).
A One-Time Single-bit Fault Leaks All Previous NTRU-HRSS Session Keys to a Chosen-Ciphertext Attack.
In Isobe, T. and Sarkar, S., editors, Progress in Cryptology - INDOCRYPT 2022 - 23rd International Conference on Cryptology in India, Kolkata,
India, December 11-14, 2022, Proceedings, volume 13774 of Lecture Notes in Computer Science, pages 617–643. Springer.

▸ Bernstein, D. J. and Persichetti, E. (2018).
Towards KEM unification.
IACR Cryptol. ePrint Arch., page 526.

▸ Dent, A. W. (2002).
A Designer’s Guide to KEMs.
Cryptology ePrint Archive, Paper 2002/174.
https://eprint.iacr.org/2002/174.

▸ Fiat, A. and Shamir, A. (1986).
How to prove yourself: Practical solutions to identification and signature problems.
In Odlyzko, A. M., editor, Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of Lecture Notes
in Computer Science, pages 186–194. Springer.

https://www.cross-crypto.com/cross.html
https://www.ledacrypt.org/
https://eprint.iacr.org/2002/174


25Bibliography II

▸ Hofheinz, D., Hövelmanns, K., and Kiltz, E. (2017).
A modular analysis of the fujisaki-okamoto transformation.
In Kalai, Y. and Reyzin, L., editors, Theory of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017,
Proceedings, Part I, volume 10677 of Lecture Notes in Computer Science, pages 341–371. Springer.

▸ Oder, T., Schneider, T., Pöppelmann, T., and Güneysu, T. (2018).
Practical cca2-secure and masked ring-lwe implementation.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):142–174.


